Actual source code: test9.c

slepc-3.18.2 2023-01-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Test BV matrix projection.\n\n";

 13: #include <slepcbv.h>

 15: int main(int argc,char **argv)
 16: {
 17:   Vec            t,v;
 18:   Mat            B,G,H0,H1;
 19:   BV             X,Y,Z;
 20:   PetscInt       i,j,n=20,kx=6,lx=3,ky=5,ly=2,Istart,Iend,col[5];
 21:   PetscScalar    alpha,value[] = { -1, 1, 1, 1, 1 };
 22:   PetscViewer    view;
 23:   PetscReal      norm;
 24:   PetscBool      verbose;

 27:   SlepcInitialize(&argc,&argv,(char*)0,help);
 28:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 29:   PetscOptionsGetInt(NULL,NULL,"-kx",&kx,NULL);
 30:   PetscOptionsGetInt(NULL,NULL,"-lx",&lx,NULL);
 31:   PetscOptionsGetInt(NULL,NULL,"-ky",&ky,NULL);
 32:   PetscOptionsGetInt(NULL,NULL,"-ly",&ly,NULL);
 33:   PetscOptionsHasName(NULL,NULL,"-verbose",&verbose);
 34:   PetscPrintf(PETSC_COMM_WORLD,"Test BV projection (n=%" PetscInt_FMT ").\n",n);
 35:   PetscPrintf(PETSC_COMM_WORLD,"X has %" PetscInt_FMT " active columns (%" PetscInt_FMT " leading columns).\n",kx,lx);
 36:   PetscPrintf(PETSC_COMM_WORLD,"Y has %" PetscInt_FMT " active columns (%" PetscInt_FMT " leading columns).\n",ky,ly);

 38:   /* Set up viewer */
 39:   PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&view);
 40:   if (verbose) PetscViewerPushFormat(view,PETSC_VIEWER_ASCII_MATLAB);

 42:   /* Create non-symmetric matrix G (Toeplitz) */
 43:   MatCreate(PETSC_COMM_WORLD,&G);
 44:   MatSetSizes(G,PETSC_DECIDE,PETSC_DECIDE,n,n);
 45:   MatSetFromOptions(G);
 46:   MatSetUp(G);
 47:   PetscObjectSetName((PetscObject)G,"G");

 49:   MatGetOwnershipRange(G,&Istart,&Iend);
 50:   for (i=Istart;i<Iend;i++) {
 51:     col[0]=i-1; col[1]=i; col[2]=i+1; col[3]=i+2; col[4]=i+3;
 52:     if (i==0) MatSetValues(G,1,&i,PetscMin(4,n-i),col+1,value+1,INSERT_VALUES);
 53:     else MatSetValues(G,1,&i,PetscMin(5,n-i+1),col,value,INSERT_VALUES);
 54:   }
 55:   MatAssemblyBegin(G,MAT_FINAL_ASSEMBLY);
 56:   MatAssemblyEnd(G,MAT_FINAL_ASSEMBLY);
 57:   if (verbose) MatView(G,view);

 59:   /* Create symmetric matrix B (1-D Laplacian) */
 60:   MatCreate(PETSC_COMM_WORLD,&B);
 61:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
 62:   MatSetFromOptions(B);
 63:   MatSetUp(B);
 64:   PetscObjectSetName((PetscObject)B,"B");

 66:   MatGetOwnershipRange(B,&Istart,&Iend);
 67:   for (i=Istart;i<Iend;i++) {
 68:     if (i>0) MatSetValue(B,i,i-1,-1.0,INSERT_VALUES);
 69:     if (i<n-1) MatSetValue(B,i,i+1,-1.0,INSERT_VALUES);
 70:     MatSetValue(B,i,i,2.0,INSERT_VALUES);
 71:   }
 72:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 73:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 74:   MatCreateVecs(B,&t,NULL);
 75:   if (verbose) MatView(B,view);

 77:   /* Create BV object X */
 78:   BVCreate(PETSC_COMM_WORLD,&X);
 79:   PetscObjectSetName((PetscObject)X,"X");
 80:   BVSetSizesFromVec(X,t,kx+2);  /* two extra columns to test active columns */
 81:   BVSetFromOptions(X);

 83:   /* Fill X entries */
 84:   for (j=0;j<kx+2;j++) {
 85:     BVGetColumn(X,j,&v);
 86:     VecSet(v,0.0);
 87:     for (i=0;i<4;i++) {
 88:       if (i+j<n) {
 89: #if defined(PETSC_USE_COMPLEX)
 90:         alpha = PetscCMPLX((PetscReal)(3*i+j-2),(PetscReal)(2*i));
 91: #else
 92:         alpha = (PetscReal)(3*i+j-2);
 93: #endif
 94:         VecSetValue(v,i+j,alpha,INSERT_VALUES);
 95:       }
 96:     }
 97:     VecAssemblyBegin(v);
 98:     VecAssemblyEnd(v);
 99:     BVRestoreColumn(X,j,&v);
100:   }
101:   if (verbose) BVView(X,view);

103:   /* Duplicate BV object and store Z=G*X */
104:   BVDuplicate(X,&Z);
105:   PetscObjectSetName((PetscObject)Z,"Z");
106:   BVSetActiveColumns(X,0,kx);
107:   BVSetActiveColumns(Z,0,kx);
108:   BVMatMult(X,G,Z);
109:   BVSetActiveColumns(X,lx,kx);
110:   BVSetActiveColumns(Z,lx,kx);

112:   /* Create BV object Y */
113:   BVCreate(PETSC_COMM_WORLD,&Y);
114:   PetscObjectSetName((PetscObject)Y,"Y");
115:   BVSetSizesFromVec(Y,t,ky+1);
116:   BVSetFromOptions(Y);
117:   BVSetActiveColumns(Y,ly,ky);

119:   /* Fill Y entries */
120:   for (j=0;j<ky+1;j++) {
121:     BVGetColumn(Y,j,&v);
122: #if defined(PETSC_USE_COMPLEX)
123:     alpha = PetscCMPLX((PetscReal)(j+1)/4.0,-(PetscReal)j);
124: #else
125:     alpha = (PetscReal)(j+1)/4.0;
126: #endif
127:     VecSet(v,(PetscScalar)(j+1)/4.0);
128:     BVRestoreColumn(Y,j,&v);
129:   }
130:   if (verbose) BVView(Y,view);

132:   /* Test BVMatProject for non-symmetric matrix G */
133:   MatCreateSeqDense(PETSC_COMM_SELF,ky,kx,NULL,&H0);
134:   PetscObjectSetName((PetscObject)H0,"H0");
135:   BVMatProject(X,G,Y,H0);
136:   if (verbose) MatView(H0,view);

138:   /* Test BVMatProject with previously stored G*X */
139:   MatCreateSeqDense(PETSC_COMM_SELF,ky,kx,NULL,&H1);
140:   PetscObjectSetName((PetscObject)H1,"H1");
141:   BVMatProject(Z,NULL,Y,H1);
142:   if (verbose) MatView(H1,view);

144:   /* Check that H0 and H1 are equal */
145:   MatAXPY(H0,-1.0,H1,SAME_NONZERO_PATTERN);
146:   MatNorm(H0,NORM_1,&norm);
147:   if (norm<10*PETSC_MACHINE_EPSILON) PetscPrintf(PETSC_COMM_WORLD,"||H0-H1|| < 10*eps\n");
148:   else PetscPrintf(PETSC_COMM_WORLD,"||H0-H1||=%g\n",(double)norm);
149:   MatDestroy(&H0);
150:   MatDestroy(&H1);

152:   /* Test BVMatProject for symmetric matrix B with orthogonal projection */
153:   MatCreateSeqDense(PETSC_COMM_SELF,kx,kx,NULL,&H0);
154:   PetscObjectSetName((PetscObject)H0,"H0");
155:   BVMatProject(X,B,X,H0);
156:   if (verbose) MatView(H0,view);

158:   /* Repeat previous test with symmetry flag set */
159:   MatSetOption(B,MAT_HERMITIAN,PETSC_TRUE);
160:   MatCreateSeqDense(PETSC_COMM_SELF,kx,kx,NULL,&H1);
161:   PetscObjectSetName((PetscObject)H1,"H1");
162:   BVMatProject(X,B,X,H1);
163:   if (verbose) MatView(H1,view);

165:   /* Check that H0 and H1 are equal */
166:   MatAXPY(H0,-1.0,H1,SAME_NONZERO_PATTERN);
167:   MatNorm(H0,NORM_1,&norm);
168:   if (norm<10*PETSC_MACHINE_EPSILON) PetscPrintf(PETSC_COMM_WORLD,"||H0-H1|| < 10*eps\n");
169:   else PetscPrintf(PETSC_COMM_WORLD,"||H0-H1||=%g\n",(double)norm);
170:   MatDestroy(&H0);
171:   MatDestroy(&H1);

173:   BVDestroy(&X);
174:   BVDestroy(&Y);
175:   BVDestroy(&Z);
176:   MatDestroy(&B);
177:   MatDestroy(&G);
178:   VecDestroy(&t);
179:   SlepcFinalize();
180:   return 0;
181: }

183: /*TEST

185:    testset:
186:       output_file: output/test9_1.out
187:       test:
188:          suffix: 1
189:          args: -bv_type {{vecs contiguous svec mat}shared output}
190:       test:
191:          suffix: 1_svec_vecs
192:          args: -bv_type svec -bv_matmult vecs
193:       test:
194:          suffix: 1_cuda
195:          args: -bv_type svec -mat_type aijcusparse
196:          requires: cuda
197:       test:
198:          suffix: 2
199:          nsize: 2
200:          args: -bv_type {{vecs contiguous svec mat}shared output}
201:       test:
202:          suffix: 2_svec_vecs
203:          nsize: 2
204:          args: -bv_type svec -bv_matmult vecs

206: TEST*/