dune-localfunctions  2.2.1
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
oCDune::MonomialEvaluator< B >::BaseIterator< Deriv >
oCDune::BasisInterfaceInterface for global-valued shape functions
oCDune::BasisInterfaceSwitch< Basis, Dummy >Switch for uniform treatment of local and global basis classes
oCDune::BasisMatrix< PreBasis, Interpolation, Field >
oCDune::BDM12DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on the reference triangle
oCDune::BDM12DLocalFiniteElement< D, R >First order Brezzi-Douglas-Marini shape functions on triangles
oCDune::BDM12DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on the reference triangle
oCDune::BDM12DLocalInterpolation< Dune::BDM12DLocalBasis< D, R > >
oCDune::BDM1Q2DLocalBasis< D, R >First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral
oCDune::BDM1Q2DLocalFiniteElement< D, R >First order Brezzi-Douglas-Marini shape functions on quadrilaterals
oCDune::BDM1Q2DLocalInterpolation< LB >First order Brezzi-Douglas-Marini shape functions on the reference quadrilateral
oCDune::BDM1Q2DLocalInterpolation< Dune::BDM1Q2DLocalBasis< D, R > >
oCDune::C0LocalBasisTraits< DF, n, D, RF, m, R >Type traits for LocalBasisInterface
oCDune::CoefficientsInterfaceInterface for global-valued coefficients
oCDune::ComputeField< Field, sum >
oCDune::PolynomialBasis< Eval, CM, D, R >::Convert< dummy, DVector >
oCDune::PolynomialBasis< Eval, CM, D, R >::Convert< dummy, DomainVector >
oCDune::DefaultBasisFactoryTraits< PreBFactory, InterpolFactory, dim, dimR, SF, CF, PreBasisKeyExtractor >
oCDune::DerivativeAssign< Vec1, Vec2 >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, derivative >, Derivatives< F2, dimD, 1, deriv, derivative > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, derivative >, Derivatives< F2, dimD, 1, deriv, value > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, derivative >, FieldVector< F2, 1 > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, derivative >, FieldVector< F2, dimR > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, derivative > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, value > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, layout >, F2 >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, value >, Derivatives< F2, dimD, 1, deriv, derivative > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, value >, Derivatives< F2, dimD, 1, deriv, value > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, value >, FieldVector< F2, 1 > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, 1, deriv, value >, FieldVector< F2, dimR > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, derivative >, Derivatives< F2, dimD, dimR, deriv, value > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, derivative >, FieldVector< F2, dimR > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, layout >, Derivatives< F2, dimD, dimR, deriv, layout > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, value >, Derivatives< F2, dimD, dimR, deriv, derivative > >
oCDune::DerivativeAssign< Derivatives< F1, dimD, dimR, deriv, value >, FieldVector< F2, dimR > >
oCDune::Derivatives< F, dimD, dimR, deriv, layout >
oCDune::Derivatives< F, dimD, dimR, 0, value >
oCDune::Derivatives< F, dimD, dimR, deriv, derivative >
oCDune::Derivatives< F, dimD, dimR, deriv-1, value >
oCDune::DGLocalCoefficientsA class providing local coefficients for dg spaces
oCDune::DGLocalCoefficientsFactoryTraits< BasisFactory >
oCDune::DimSpecificPQkLocalFiniteElementFactory< D, R, d, k >Factory that only creates dimension specific local finite elements
oCDune::DimSpecificPQkLocalFiniteElementFactory< D, R, 2, k >Factory that only creates dimension specific local finite elements
oCDune::DimSpecificPQkLocalFiniteElementFactory< D, R, 3, k >Factory that only creates dimension specific local finite elements
oCDune::EdgeS0_5Common< dim, DF >Common base class for edge elements
oCDune::EdgeS0_5Common< dim >
oCDune::EdgeS0_5Common< Geometry::mydimension, Geometry::ctype >
oCDune::EdgeS0_5Common< Traits_::dimDomainLocal, Traits_::DomainField >
oCDune::EdgeS0_5Common< typename Basis::Traits::dimDomainLocal, typename Basis::Traits::DomainField >
oCDune::EdgeS0_5FiniteElement< Geometry, RF >FiniteElement for lowest order edge elements on simplices
oCDune::EmptyPointSet< F, dim >
oCDune::EquidistantPointSetImpl< Topology, F >
oCDune::EquidistantPointSetImpl< GenericGeometry::Point, F >
oCDune::EquidistantPointSetImpl< GenericGeometry::Prism< BaseTopology >, F >
oCDune::EquidistantPointSetImpl< GenericGeometry::Pyramid< BaseTopology >, F >
oCDune::MonomImp::EvalAccess< Traits >Access output vector of evaluateFunction() and evaluate()
oCDune::MonomImp::Evaluate< Traits, c >
oCDune::MonomImp::Evaluate< Traits, 1 >
oCDune::OrthonormalBasisFactory< dim, SF, CF >::EvaluationBasisFactory< dd, FF >
oCDune::RTPreBasisFactory< dim, Field >::EvaluationBasisFactory< dd, FF >
oCDune::DefaultBasisFactory< PreBFactory, InterpolFactory, dim, dimR, SF, CF, PreBasisKeyExtractor >::EvaluationBasisFactory< dd, FF >
oCDune::MonomialBasisFactory< dim, F >::EvaluationBasisFactory< dd, FF >
oCDune::MonomialBasisProvider< dim, SF >::EvaluationBasisFactory< dd, FF >
oCDune::FieldCast< F2, V >
oCDune::FieldCast< F2, Dune::FieldMatrix< F1, dim1, dim2 > >
oCDune::FieldCast< F2, Dune::FieldVector< F1, dim > >
oCDune::GenericGeometry::FieldHelper< Field >
oCFiniteElementFactory
oCDune::FiniteElementFactoryInterface< Geometry, VertexOrder >Factory interface for global-valued finite elements
oCDune::FiniteElementInterfaceInterface for global-valued finite elements
oCDune::FiniteElementInterfaceSwitch< FiniteElement, Dummy >Switch for uniform treatment of finite element with either the local or the global interface
oCDune::FixedOrderLocalBasisTraits< T, order >Construct LocalBasisTraits with fixed diff order
oCDune::GenericLocalFiniteElement< BasisF, CoeffF, InterpolF >A LocalFiniteElement implementation bassed on three TopologyFactories providing the LocalBasis, LocalCoefficients, and LocalInterpolations. Note the key type for all three factories must coincide
oCDune::GenericLocalFiniteElement< FE::BasisFactory, DGLocalCoefficientsFactory< FE::BasisFactory >, FE::InterpolationFactory >
oCDune::GenericLocalFiniteElement< FE::BasisFactory, DGLocalCoefficientsFactory< FE::BasisFactory >, LocalL2InterpolationFactory< FE::BasisFactory, false > >
oCDune::GenericLocalFiniteElement< LagrangeBasisFactory< LP, dimDomain, SF, CF >, LagrangeCoefficientsFactory< LP, dimDomain, SF >, LagrangeInterpolationFactory< LP, dimDomain, SF > >
oCDune::GenericLocalFiniteElement< OrthonormalBasisFactory< dimDomain, SF, CF >, DGLocalCoefficientsFactory< OrthonormalBasisFactory< dimDomain, SF, CF > >, LocalL2InterpolationFactory< OrthonormalBasisFactory< dimDomain, SF, CF >, true > >
oCDune::GenericLocalFiniteElement< RaviartThomasBasisFactory< dimDomain, SF, CF >, RaviartThomasCoefficientsFactory< dimDomain >, RaviartThomasL2InterpolationFactory< dimDomain, SF > >
oCDune::RTL2InterpolationBuilder< dim, Field >::Creator< Topology >::GetCodim< face >
oCDune::InterpolationHelper< F, dimension >::Helper< Func, Container, type >
oCDune::InterpolationHelper< F, dimension >::Helper< Basis, Matrix, false >
oCDune::InterpolationHelper< F, dimension >::Helper< Func, Vector, true >
oCDune::HierarchicalP2LocalFiniteElement< D, R, dim >
oCDune::HierarchicalP2WithElementBubbleLocalFiniteElement< D, R, dim >
oCDune::HierarchicalPrismP2LocalBasis< D, R >
oCDune::HierarchicalPrismP2LocalFiniteElement< D, R >
oCDune::HierarchicalPrismP2LocalInterpolation< LB >
oCDune::HierarchicalPrismP2LocalInterpolation< Dune::HierarchicalPrismP2LocalBasis< D, R > >
oCDune::HierarchicalSimplexP2LocalBasis< D, R, dim >
oCDune::HierarchicalSimplexP2LocalBasis< D, R, 1 >Hierarchical P2 basis in 1d
oCDune::HierarchicalSimplexP2LocalBasis< D, R, 2 >Hierarchical P2 basis in 2d
oCDune::HierarchicalSimplexP2LocalBasis< D, R, 3 >Hierarchical P2 basis in 3d
oCDune::HierarchicalSimplexP2LocalInterpolation< LB >
oCDune::HierarchicalSimplexP2LocalInterpolation< Dune::HierarchicalSimplexP2LocalBasis< D, R, dim > >
oCDune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, dim >
oCDune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, 1 >Hierarchical P2 basis in 1d
oCDune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, 2 >Hierarchical P2 basis in 1d
oCDune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, 3 >Hierarchical P2 basis in 1d
oCDune::HierarchicalSimplexP2WithElementBubbleLocalCoefficients< dim >The local finite element needed for the Zou-Kornhuber estimator for Signorini problems
oCDune::HierarchicalSimplexP2WithElementBubbleLocalInterpolation< LB >
oCDune::HierarchicalSimplexP2WithElementBubbleLocalInterpolation< Dune::HierarchicalSimplexP2WithElementBubbleLocalBasis< D, R, dim > >
oCDune::Identity
oCDune::EquidistantPointSet< F, dim >::Topology< T >::Init< pdim >
oCDune::LobattoPointSet< F, dim >::Setup< Topology >::Init< SubTopology >
oCDune::LobattoPointSet< F, dim >::Setup< Topology >::InitCodim< pdim >
oCDune::LobattoPointSet< F, dim >::Setup< Topology >::InitCodim< pdim >::InitSub< i >
oCONBCompute::Integral< Topology >
oCONBCompute::Integral< Dune::GenericGeometry::Point >
oCONBCompute::Integral< Dune::GenericGeometry::Prism< Base > >
oCONBCompute::Integral< Dune::GenericGeometry::Pyramid< Base > >
oCDune::InterpolationHelper< F, dimension >
oCDune::InterpolationInterfaceInterface for global-valued interpolation
oCDune::MonomialEvaluator< B >::Iterator< deriv >
oCDune::MonomImp::JacobianAccess< Traits >Access output vector of evaluateJacobian()
oCDune::LagrangeCoefficientsFactoryTraits< LP, dim, F >
oCDune::LagrangeInterpolationFactoryTraits< LP, dim, F >
oCDune::LagrangePoint< F, dim >
oCDune::LFEMatrix< F, aligned >
oCDune::LFEMatrix< Field >
oCDune::LFEMatrix< scalar_t >
oCDune::LFETensor< F, dimD, deriv >
oCDune::LFETensor< F, 0, 0 >
oCDune::LFETensor< F, 0, deriv >
oCDune::LFETensor< F, dimD, 0 >
oCDune::LFETensorAxpy< Vec1, Vec2, deriv >
oCDune::LFETensorAxpy< Derivatives< F1, dimD, 1, d, derivative >, Vec2, deriv >
oCDune::LFETensorAxpy< Derivatives< F1, dimD, 1, d, value >, Vec2, deriv >
oCDune::LFETensorAxpy< Derivatives< F1, dimD, dimR, d, derivative >, Vec2, deriv >
oCDune::LFETensorAxpy< Derivatives< F1, dimD, dimR, d, value >, Vec2, deriv >
oCDune::LobattoInnerPoints< Field, Topology >
oCDune::LobattoInnerPoints< Field, GenericGeometry::Point >
oCDune::LobattoInnerPoints< Field, GenericGeometry::Prism< Base > >
oCDune::LobattoInnerPoints< Field, GenericGeometry::Pyramid< Base > >
oCDune::LobattoPoints< Field >
oCDune::LocalBasisTraits< DF, n, D, RF, m, R, J, dorder >Type traits for LocalBasisVirtualInterface
oCLocalBasisVirtualInterfaceBase
oCDune::LocalBasisVirtualInterfaceBase< LocalBasisTraits< DF, n, D, RF, m, R, J, 0 > >Virtual base class for a local basis
oCDune::LocalCoefficientsContainer
oCDune::LocalCoefficientsVirtualInterfaceVirtual base class for local coefficients
oCDune::LocalFiniteElementCloneFactory< Imp >
oCDune::LocalFiniteElementCloneFactoryHelper< Imp, IsInterface >
oCDune::LocalFiniteElementCloneFactoryHelper< Imp, true >
oCDune::LocalFiniteElementFunctionBase< FE >Return a proper base class for functions to use with LocalInterpolation
oCDune::LocalFiniteElementTraits< LB, LC, LI >Traits helper struct
oCDune::LocalFiniteElementVirtualInterface< T >Virtual base class for local finite elements with functions
oCDune::LocalFiniteElementVirtualInterface< Imp::Traits::LocalBasisType::Traits >
oCDune::LocalFiniteElementVirtualInterface< LocalBasisTraits< DF, n, D, RF, m, R, J, 0 > >Virtual base class for local finite elements with functions
oCDune::LocalInterpolationVirtualInterfaceBase< DomainType, RangeType >Virtual base class for a local interpolation
oCDune::LocalInterpolationVirtualInterfaceBase< typename T::DomainType, typename T::RangeType >
oCDune::LocalKeyDescribe position of one degree of freedom
oCDune::LocalL2Interpolation< B, Q, onb >A local L2 interpolation taking a test basis and a quadrature rule
oCDune::LocalL2InterpolationBase< B, Q >
oCDune::LocalL2InterpolationFactoryTraits< BasisFactory, onb >
oCDune::LocalLagrangeInterpolation< LP, dim, F >
oCDune::LowerOrderLocalBasisTraits< T >Construct LocalBasisTraits with one diff order lower
oCDune::GenericLocalFiniteElement< BasisF, CoeffF, InterpolF >::FiniteElement::Maker< Topology >
oCDune::MimeticLocalBasis< D, R, dim >
oCDune::MimeticLocalFiniteElement< D, R, dim >
oCDune::MimeticLocalInterpolation< LB >
oCDune::MimeticLocalInterpolation< Dune::MimeticLocalBasis< D, R, dim > >
oCDune::MonomialBasisFactoryTraits< dim, F >
oCDune::MonomialBasisHelper< mydim, dim, F >
oCDune::MonomialBasisImpl< Topology, F >
oCDune::MonomialBasisImpl< BaseTopology, Field >
oCDune::MonomialBasisImpl< GenericGeometry::CubeTopology< dim >::type, F >
oCDune::MonomialBasisImpl< GenericGeometry::Point, F >
oCDune::MonomialBasisImpl< GenericGeometry::Prism< BaseTopology >, F >
oCDune::MonomialBasisImpl< GenericGeometry::Pyramid< BaseTopology >, F >
oCDune::MonomialBasisImpl< GenericGeometry::SimplexTopology< dim >::type, F >
oCDune::MonomialBasisImpl< Topology, Field >
oCDune::MonomialBasisSize< Topology >
oCDune::MonomialBasisSize< GenericGeometry::Point >
oCDune::MonomialBasisSize< GenericGeometry::Prism< BaseTopology > >
oCDune::MonomialBasisSize< GenericGeometry::Pyramid< BaseTopology > >
oCDune::MonomialEvaluator< B >
oCDune::MonomLocalBasis< D, R, d, p, diffOrder >Constant shape function
oCDune::MonomLocalFiniteElement< D, R, d, p, diffOrder >
oCDune::MonomLocalInterpolation< LB, size >
oCDune::MonomLocalInterpolation< Dune::MonomLocalBasis< D, R, d, p, diffOrder >, static_size >
oCDune::Mult< Field, Field2 >
oCDune::Mult< Field, FieldVector< Field2, dimRange > >
oCDune::MultiIndex< dim, Field >
oCDune::OrthonormalBasisFactoryTraits< dim, SF, CF >
oCDune::P0LocalBasis< D, R, d >Constant shape function
oCDune::P0LocalFiniteElement< D, R, d >
oCDune::P0LocalInterpolation< LB >
oCDune::P0LocalInterpolation< Dune::P0LocalBasis< D, R, d > >
oCDune::P1LocalBasis< D, R, dim >Linear Lagrange shape functions on the simplex
oCDune::P1LocalFiniteElement< D, R, dim >The local p1 finite element on simplices
oCDune::P1LocalInterpolation< dim, LB >
oCDune::P1LocalInterpolation< dim, Dune::P1LocalBasis< D, R, dim > >
oCDune::P23DLocalBasis< D, R >Quadratic Lagrange shape functions on the tetrahedron
oCDune::P23DLocalFiniteElement< D, R >
oCDune::P23DLocalInterpolation< LB >
oCDune::P23DLocalInterpolation< Dune::P23DLocalBasis< D, R > >
oCDune::P2LocalFiniteElement< D, R, d >
oCDune::Pk1DLocalBasis< D, R, k >Lagrange shape functions of arbitrary order on the 1D reference triangle
oCDune::Pk1DLocalFiniteElement< D, R, k >
oCDune::Pk1DLocalInterpolation< LB >
oCDune::Pk1DLocalInterpolation< Dune::Pk1DLocalBasis< D, R, 2 > >
oCDune::Pk1DLocalInterpolation< Dune::Pk1DLocalBasis< D, R, k > >
oCDune::Pk2DLocalBasis< D, R, k >Lagrange shape functions of arbitrary order on the reference triangle
oCDune::Pk2DLocalFiniteElement< D, R, k >
oCDune::Pk2DLocalFiniteElement< D, R, 2 >
oCDune::Pk2DLocalInterpolation< LB >
oCDune::Pk2DLocalInterpolation< Dune::Pk2DLocalBasis< D, R, 2 > >
oCDune::Pk2DLocalInterpolation< Dune::Pk2DLocalBasis< D, R, k > >
oCDune::Pk3DLocalBasis< D, R, k >Lagrange shape functions of arbitrary order on the reference tetrahedron
oCDune::Pk3DLocalBasis< D, R, 0 >
oCDune::Pk3DLocalFiniteElement< D, R, k >
oCDune::Pk3DLocalInterpolation< LB >
oCDune::Pk3DLocalInterpolation< Dune::Pk3DLocalBasis< D, R, 2 > >
oCDune::Pk3DLocalInterpolation< Dune::Pk3DLocalBasis< D, R, k > >
oCDune::PkLocalFiniteElement< D, R, d, k >General Lagrange finite element with arbitrary dimension and polynomial order
oCDune::PolynomialBasis< Eval, CM, D, R >
oCDune::PowerBasis< Backend, dimR >Meta-basis turning a scalar basis into vector-valued basis
oCDune::PowerBasis< typename Backend::Traits::Basis, dimR >
oCDune::PowerFiniteElement< Backend, dimR >Meta-finite element turning a scalar finite element into vector-valued one
oCDune::PowerInterpolation< Backend, BasisTraits >Meta-interpolation turning a scalar interpolation into vector-valued interpolation
oCDune::PowerInterpolation< typename Backend::Traits::Interpolation, typename Basis::Traits >
oCDune::PQ22DLocalFiniteElement< D, R >
oCDune::PQkLocalFiniteElementCache< D, R, dim, k >A cache that stores all available Pk/Qk like local finite elements for the given dimension and order
oCDune::PQkLocalFiniteElementFactory< D, R, dim, k >Factory to create any kind of Pk/Qk like element wrapped for the virtual interface
oCDune::Precision< Field >
oCDune::Precision< double >
oCDune::Precision< float >
oCDune::Precision< long double >
oCDune::PrismP1LocalBasis< D, R >Linear Lagrange shape functions on the prism
oCDune::PrismP1LocalFiniteElement< D, R >First-order Lagrangian finite element on a prism
oCDune::PrismP1LocalInterpolation< LB >
oCDune::PrismP1LocalInterpolation< Dune::PrismP1LocalBasis< D, R > >
oCDune::PrismP2LocalBasis< D, R >Quadratic Lagrange shape functions on the prism
oCDune::PrismP2LocalFiniteElement< D, R >
oCDune::PrismP2LocalInterpolation< LB >
oCDune::PrismP2LocalInterpolation< Dune::PrismP2LocalBasis< D, R > >
oCDune::PyramidP1LocalBasis< D, R >Linear Lagrange shape functions on the pyramid
oCDune::PyramidP1LocalCoefficientsLayout map for PyramidP1 elements
oCDune::PyramidP1LocalFiniteElement< D, R >First-order Lagrangian finite element on a prism
oCDune::PyramidP1LocalInterpolation< LB >
oCDune::PyramidP1LocalInterpolation< Dune::PyramidP1LocalBasis< D, R > >
oCDune::PyramidP2LocalBasis< D, R >Quadratic Lagrange shape functions on the pyramid
oCDune::PyramidP2LocalFiniteElement< D, R >
oCDune::PyramidP2LocalInterpolation< LB >
oCDune::PyramidP2LocalInterpolation< Dune::PyramidP2LocalBasis< D, R > >
oCDune::Q1LocalBasis< D, R, dim >Lagrange shape functions of order 1 on the reference cube
oCDune::Q1LocalBasis< Geometry::ctype, RF, dim >
oCDune::Q1LocalFiniteElement< D, R, dim >The local Q1 finite element on cubes
oCDune::Q1LocalFiniteElement< Geometry::ctype, RF, Geometry::mydimension >
oCDune::Q1LocalInterpolation< dim, LB >
oCDune::Q1LocalInterpolation< dim, Dune::Q1LocalBasis< D, R, dim > >
oCDune::Q1LocalInterpolation< dim, Dune::Q1LocalBasis< Geometry::ctype, RF, dim > >
oCDune::Q22DLocalBasis< D, R >Lagrange shape functions of order 2 on the reference quadrilateral
oCDune::Q22DLocalBasis< Geometry::ctype, RF >
oCDune::Q22DLocalFiniteElement< D, R >
oCDune::Q22DLocalFiniteElement< Geometry::ctype, RF >
oCDune::Q22DLocalInterpolation< LB >
oCDune::Q22DLocalInterpolation< Dune::Q22DLocalBasis< D, R > >
oCDune::Q22DLocalInterpolation< Dune::Q22DLocalBasis< Geometry::ctype, RF > >
oCDune::Q2LocalBasis< D, R, dim >Lagrange shape functions of order 2 on the reference cube
oCDune::Q2LocalBasis< Geometry::ctype, RF, dim >
oCDune::Q2LocalFiniteElement< D, R, dim >2nd-order Lagrangian finite elements on hybercubes
oCDune::Q2LocalFiniteElement< Geometry::ctype, RF, Geometry::mydimension >
oCDune::Q2LocalInterpolation< LB >
oCDune::Q2LocalInterpolation< Dune::Q2LocalBasis< D, R, dim > >
oCDune::Q2LocalInterpolation< Dune::Q2LocalBasis< Geometry::ctype, RF, dim > >
oCDune::RannacherTurek2DLocalBasis< D, R >
oCDune::RannacherTurek2DLocalFiniteElement< D, R >
oCDune::RannacherTurek2DLocalInterpolation< LB >
oCDune::RannacherTurek2DLocalInterpolation< Dune::RannacherTurek2DLocalBasis< D, R > >
oCDune::RaviartThomasCoefficientsFactoryTraits< dim >
oCDune::RaviartThomasL2InterpolationFactoryTraits< dim, F >
oCDune::RefinedP0LocalFiniteElement< D, R, dim >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
oCDune::RefinedP0LocalFiniteElement< D, R, 2 >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
oCDune::RefinedP0LocalFiniteElement< D, R, 3 >Local finite element that is piecewise P0 on a once uniformly refined reference geometry
oCDune::RefinedP0LocalInterpolation< LB >
oCDune::RefinedP0LocalInterpolation< Dune::RefinedP0LocalBasis< D, R, 2 > >
oCDune::RefinedP0LocalInterpolation< Dune::RefinedP0LocalBasis< D, R, 3 > >
oCDune::RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 2 > >
oCDune::RefinedP0LocalInterpolation< RefinedP0LocalBasis< D, R, 3 > >
oCDune::RefinedP1LocalFiniteElement< D, R, dim >
oCDune::RefinedP1LocalFiniteElement< D, R, 2 >
oCDune::RefinedP1LocalFiniteElement< D, R, 3 >
oCDune::RefinedSimplexLocalBasis< D, dim >
oCDune::RefinedSimplexLocalBasis< D, 1 >Base class for LocalBasis classes based on uniform refinement in 1D; provides numbering and local coordinates of subelements
oCDune::RefinedSimplexLocalBasis< D, 2 >Base class for LocalBasis classes based on uniform refinement in 2D; provides numbering and local coordinates of subelements
oCDune::RefinedSimplexLocalBasis< D, 3 >Base class for LocalBasis classes based on uniform refinement in 3D; provides numbering and local coordinates of subelements
oCDune::RT02DLocalBasis< D, R >Lowest order Raviart-Thomas shape functions on the reference triangle
oCDune::RT02DLocalFiniteElement< D, R >
oCDune::RT02DLocalInterpolation< LB >
oCDune::RT02DLocalInterpolation< Dune::RT02DLocalBasis< D, R > >
oCDune::RT0Q2DLocalBasis< D, R >Lowest order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT0Q2DLocalFiniteElement< D, R >
oCDune::RT0Q2DLocalInterpolation< LB >Lowest order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT0Q2DLocalInterpolation< Dune::RT0Q2DLocalBasis< D, R > >
oCDune::RT0Q3DLocalBasis< D, R >Lowest order Raviart-Thomas shape functions on the reference hexahedron
oCDune::RT0Q3DLocalFiniteElement< D, R >
oCDune::RT0Q3DLocalInterpolation< LB >Lowest order Raviart-Thomas shape functions on the reference hexahedron
oCDune::RT0Q3DLocalInterpolation< Dune::RT0Q3DLocalBasis< D, R > >
oCDune::RT0QLocalFiniteElement< D, R, dim >Lowest order Raviart-Thomas shape functions on quadrilaterals
oCDune::RT12DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference triangle
oCDune::RT12DLocalCoefficientsLayout map for Raviart-Thomas-1 elements on the reference triangle
oCDune::RT12DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on triangles
oCDune::RT12DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT12DLocalInterpolation< Dune::RT12DLocalBasis< D, R > >
oCDune::RT1Q2DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT1Q2DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on quadrilaterals
oCDune::RT1Q2DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT1Q2DLocalInterpolation< Dune::RT1Q2DLocalBasis< D, R > >
oCDune::RT1Q3DLocalBasis< D, R >First order Raviart-Thomas shape functions on the reference hexahedron
oCDune::RT1Q3DLocalFiniteElement< D, R >First order Raviart-Thomas shape functions on cubes
oCDune::RT1Q3DLocalInterpolation< LB >First order Raviart-Thomas shape functions on the reference hexahedron
oCDune::RT1Q3DLocalInterpolation< Dune::RT1Q3DLocalBasis< D, R > >
oCDune::RT2Q2DLocalBasis< D, R >Second order Raviart-Thomas shape functions on the reference quadrilateral
oCDune::RT2Q2DLocalFiniteElement< D, R >Second order Raviart-Thomas shape functions on cubes
oCDune::RT2Q2DLocalInterpolation< LB >Second order Raviart-Thomas shape functions on the reference triangle
oCDune::RT2Q2DLocalInterpolation< Dune::RT2Q2DLocalBasis< D, R > >
oCDune::RTL2InterpolationBuilder< dim, Field >
oCDune::RTL2InterpolationBuilder< dimension, Field >
oCDune::RTPreBasisFactoryTraits< dim, Field >
oCDune::RTVecMatrix< Topology, Field >
oCDune::MonomImp::Size< d, k >
oCDune::MonomImp::Size< 0, 0 >
oCDune::MonomImp::Size< 0, k >
oCDune::MonomImp::Size< d, 0 >
oCDune::SparseCoeffMatrix< F, bSize >
oCtemplate Iterator
oCTopologyFactory
oCTopologySingletonFactory
oCDune::FiniteElementInterface::TraitsTypes of component objects
oCDune::BasisInterface::TraitsTypes of domain and range
oCDune::PowerFiniteElement< Backend, dimR >::TraitsTypes of component objects
oCDune::EdgeS0_5Basis< Geometry, RF >::TraitsExport type traits for function signature
oCTraits
oCDune::Unity< Field >A class representing the unit of a given Field
oCDune::Unity< MultiIndex< dim, F > >
oCDune::VirtualMonomialBasis< dim, F >
oCDune::VirtualMonomialBasis< Topology::dimension, F >
oCDune::Zero< Field >A class representing the zero of a given Field
\CDune::Zero< MultiIndex< dim, F > >